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Abstract

The whistler anistropy instability is studied in a magnetized, homogeneous, collisionless plasma
model. The electrons (denoted by subscript e) are represented initially with a single bi-Maxwellian
velocity distribution with a temperature anisotropy T'1¢/Tj. > 1 where L and || denote directions
perpendicular and parallel to the background magnetic field B, respectively. Kinetic linear disper-
sion theory predicts that, if the ratio of the electron plasma frequency w, to the electron cyclotron
frequency €2 is greater than unity and ), > 0.025, the maximum growth rate of this instability is
at parallel propagation, where the fluctuating fields are strictly electromagnetic. At smaller values
of B¢, however, the maximum growth rate shifts to propagation oblique to B, and the fluctuating
electric fields become predominantly electrostatic. Linear theory and two-dimensional particle-in-
cell simulations are used to examine the consequences of this transition. Three simulations are
carried out, with initial . = 0.10, 0.03, and 0.01. The fluctuating fields of the 3, = 0.10 run are
predominantly electromagnetic, with nonlinear consequences similar to those of simulations already
described in the literature. In contrast, the growth of fluctuations at oblique propagation in the
low electron 3 runs leads to a significant JEj; which heats the electrons leading to the formation

of a substantial suprathermal component in the electron parallel velocity distribution.



I. INTRODUCTION

A mode frequently observed in the terrestrial magnetosphere is the whistler, which propa-
gates in a frequency range Q, < w, < [$2.| where the lower hybrid frequency €, ~ /€, ||
and €2; represents the cyclotron frequency of the jth species of a plasma. Whistlers can be
excited by several different sources in the magnetosphere where they, in turn, react back upon
the plasmas via both quasilinear and nonlinear processes. Here we describe a study of the
whistler anisotropy instability driven by the electron temperature anisotropy 7'\ ./Tj. > 1,
where | and || denote directions perpendicular and parallel to the background magnetic field
B,, respectively. We have used both kinetic linear dispersion theory and two-dimensional
particle-in-cell (PIC) simulations to examine the fundamental properties of this growing
mode and its consequences for the electron velocity distribution as functions of J.

Linear dispersion theory predicts that, at sufficiently large 3. and w/[2| > 1 (Here w,
denotes the electron plasma frequency), a sufficiently large electron temperature anisotropy
T\ c/Tje > 1 drives this instability with kc/w. < 1 and maximum growth rate at k x B, = 0
(e.g., [1], Chapter 7). This is the electromagnetic regime of this instability, because £} ~ 0
and 0B ~ 0 so that both 0B and JF are transverse to B,. As fj. decreases, a successively
larger electron anisotropy is needed to excite the instability ([2]) until near 3, ~ 0.025, the
maximum growth rate shifts from parallel to oblique propagation relative to B, ([3], [4], [5],
[6], [7]). In this regime, the fluctuating electric fields become predominantly electrostatic
with k - 0E ~ kJE. Nevertheless, the fluctuating magnetic fields remain non-zero, so [4]
termed this the quasi-electrostatic regime of this instability. We have used kinetic linear
dispersion theory to examine the details of this transition.

Linear dispersion theory not only provides a relationship between the complex fre-
quency and wavevector k for a particular normal mode, it also yields dimensionless ratios
of quadratic combinations of the various fluctuating field components of that mode [e.g.,
Chapter 5 of [1]). For example, linear theory yields the fluctuating magnetic field ratios
|0B;|*/|0B|* and the fluctuating electric field ratios |§E;|?/|0E[* as functions of the fre-
quency and wavevector. We define the electrostatic ratio of the fluctuating electric fields to

be .
k- 0E|?

RBS =
OE[?



and the electric/magnetic field energy ratio as

OEE = W (1)

([1], Eq. (5.2.5)).

We have further used two-dimensional PIC simulations to study the nonlinear proper-
ties of this instability during the transition from the strictly electromagnetic regime to the
predominantly electrostatic domain. A number of PIC simulations have been carried out
in homogeneous plasma models for the former case, both one-dimensional ([8], [9], [10],
[11], [12]) and two-dimensional ([10], [2]; [13]), but there have been relatively few such
computations in the latter low-3 case ([13]; [7]). The primary wave-particle interaction for
electromagnetic fluctuations at k x B, = 0 is the cyclotron resonance, and its primary con-
sequence is pitch-angle scattering. At sufficiently oblique propagation, however, the Landau
resonance plays an increasing role in particle scattering, and particle heating parallel to
B, should become important. Thus, as we simulate this instability at successively smaller
values of fjj ., our results show evidence of the transition from electron pitch-angle scattering
to parallel heating.

We denote the jth species plasma frequency as w; = \/W, the jth species cy-
clotron frequency as Q; = e;B,/mjc, the jth component inertial length \; = ¢/w;, the
jth component thermal speed as v; = \/kgTj;/m;, and 3); = 87mjkBT||j/B§. The Alfvén
speed is vy = B,/\/4mn,m;. Here n, is the total plasma density, B, denotes the uniform
background magnetic field, and we consider a two-species plasma of electrons (subscript e)
and protons (subscript p).

The Cartesian coordinate system of our linear dispersion theory ([1]) admits spatial vari-
ations in both the direction parallel to B, (denoted by ||) and one direction perpendic-
ular to the background field (denoted by L), but no spatial variations in the other per-
pendicular direction (denoted by L_1). So for our linear theory the real wavevector is
k = zk| + yk, = zk cost) + yk sinf where 6 denotes the wavevector direction relative to
B,. The complex frequency is w = w, + iy where v > 0 represents temporal growth of a
normal mode of the plasma. For a given set of plasma parameters, v,, denotes the maximum
growth rate taken over all magnitudes and directions of k, and w,,, k,, and 6,, denote the

corresponding real frequency, wavenumber and angle of propagation, respectively.



II. LINEAR THEORY

This section describes results from numerical solutions of the full electromagnetic linear
kinetic dispersion equation for bi-Maxwellian velocity distributions ([1]) without approxi-
mation. The proton velocity distribution in each case is an isotropic Maxwellian, and the
electron velocity distribution is a single bi-Maxwellian with 7';./Tj. > 1. The following
values are assumed: m,/m, = 1836, w./|2| = 4.0, Tjc/T, = 1.0, and T, =T, = T),.

Figure 1 compares v(k) near a maximum growth rate of 7,,/|2.| = 0.01 as a function of
the propagation angle for two cases: (. = 0.10 and T ./Tj = 2.25, when 7, is at parallel
propagation, and 3. = 0.01 and T'./Tj. = 3.78, when maximum growth is at oblique
propagation. At 0.10 < 3, < 10, the maximum growth rate remains at parallel propagation
and, although it is not shown here, the cone of unstable modes at k,v./|Q2.| remains confined
to 6 < 30°.

Figure 2 compares the fluctuating field ratios near maximum growth in the two cases
illustrated in Figure 1. At (), = 0.10 the fluctuations are predominantly electromagnetic,
but at . = 0.01, the compressive magnetic component dB) becomes appreciable and the
electrostatic component dominates the fluctuating electric field, i.e. 0.98 < R.; < 1.0 (not
shown).

Figure 3 illustrates some properties of the whistler anisotropy instability at 7,,/|Q¢| =
0.01 as functions of fj.. In the electromagnetic regime, the maximum growth rate is at
propagation parallel to B, both k,,c/w. and kp,v. /|| provide weak variations as . varies
by more than two orders of magnitude, the anisotropy at instability threshold, T'./Tj. — 1,
scales roughly as the inverse of m as in [5], and ogp << 1. But in the predominantly
electrostatic regime at 3. < 0.025, the maximum growth rate changes to distinctly oblique
propagation. Furthermore, w,/|Qe|, O, kmve/|2|, and the electron temperature anisotropy
all approach constant asymptotic values as (3. diminishes toward zero.

Further, we have used our kinetic linear dispersion code to examine parametric variations
of the critical value of 3, that is, the value at which the maximum growth rate undergoes
a transition from parallel propagation to oblique propagation. We find that this critical 3
is essentially independent of w,/|€2| as long as w./|Q2| > 1, and that it is a rather weak

function of the instability growth rate, satisfying 0.022 < 5. < 0.025 over two orders of

~Y

magnitude variation in the maximum growth rate, i.e., 0.001 < v,,/|Q| < 0.10.



III. PARTICLE-IN-CELL SIMULATIONS

This section describes particle-in-cell simulations of the whistler anisotropy instability
carried out in a magnetized, homogeneous, collisionless plasma model. Our concern here
is whistler fluctuations at w, >> (1,, so the protons are treated as an immobile, charge
neutralizing background to conserve computation time, as in [2] and [7]. The initial electron
velocity distribution is a single bi-Maxwellian with 7'\ ./Tj. > 1. Initial conditions on the
dimensionless plasma parameters are m,/m, = 1836 and w,/|€2| = 4.0. The two-dimensional
simulation domain lies in the z-y plane with B, in the z-direction, so k = xk; + yk,.
Periodic boundary conditions are used in both spatial directions, the number of cells in the
simulations are N X N = 64 x 64 = 4096, and the simulation time step is {2, At = 0.00001.
There are 9600 simulation particles in each cell at ¢ = 0.

Kinetic linear dispersion theory (see Section 2) shows that, for the case of a single
bi-Maxwellian electron distribution considered as the initial condition here, the whistler
anisotropy instability typically has maximum growth rate at k x B, = 0 if 3. > 0.025,
whereas the maximum growth rate shifts to oblique propagation at 40° <, 6 < 50° for 3. <
0.025. To study the nonlinear consequences of this fundamental change in propagation, we
have carried out three PIC simulations, all with initial parameters corresponding to lin-
ear theory maximum growth rates of v,,/|€%| = 0.03. Run 1 begins with f, = 0.10 and
TLe/THe = 2.75; linear theory predicts that the maximum growth rate is at k,, A\, = 1.0 and
0, = 0°. For this run we chose a simulation box size of Ly = L; = 1.2\,. For Run 2,
the initial plasma parameters are (. = 0.03 and T';./T|. = 4.1; the corresponding maxi-
mum growth rate is at k,A. = 1.3 and 6,, = 0°. For this run our simulation box size is
Ly =L, =0.6\,. For Run 3, the initial plasma parameters are 3. = 0.01 and T',./T}. =
5.0; the corresponding maximum growth rate is at k,,A\. = 3.8 and 6,,, = 48°. Here we used a
box size of Ly = L, = 0.3),. For w./[2| = 4.0,, Eq. (4) of [13] implies an electron parallel
temperature of 1.6 keV for Run 1 at 3. = 0.10, and kpTj. = 160 eV for Run 3 with 3, =
0.01.

Figure 4 presents linear theory growth rates as functions of k£ and 6 for the initial param-
eters of the three runs as stated above. The 3, = 0.10 case of Run 1 has maximum growth
rate at k X B, = 0, with weaker growth at oblique propagation. The 3. = 0.03 case of Run

2 also has maximum growth rate at k x B, = 0, but weaker growth extends to more oblique



propagation. For the (. = 0.01 case of Run 3, the maximum growth rate has shifted to
oblique propagation, although weaker growth persists at k x B, = 0.

This prediction is confirmed by the simulation results illustrated in Figure 5 which com-
pares the two-dimensional spectra of 0 B, | during the linear growth phase of all three runs
as functions of both wavevector and position. The enhanced fluctuations of Run 1 display
essentially vertical wavefronts which correspond to k x B, ~ 0, whereas the wavefronts from
Run 2 indicate some departures from strictly vertical, consistent with the increasing impor-
tance of fluctuation growth at oblique propagation. Finally, the wavefronts of Run 3 are at
distinctly oblique directions of propagation consistent with the linear theory prediction of
6 = 48° at maximum growth rate.

Figure 6 compares the electron temperature anisotropy, the fluctuating magnetic field
component energies, and the fluctuating electric field component energies as functions of
time for the three runs. In all three cases, the early-time (0 < ||t < 300) response of the
instability is exponential growth at rates somewhat less than that predicted by linear theory;
here v/|Q.| ~ 0.01 for Run 1 and v/|Q, ~ 0.02 for Run 3. In agreement with the linear
theory predictions of Figure 2, the fluctuating field energy densities for electromagnetic Run
1 satisfy |[0B)]> << [6B.]> £ |0B.1|* and |6E)|> << |6E 1 |> < |0E.|> whereas for the
predominantly electrostatic Run 3 [0B)|* ~ |6B,|* < |6B,(|* and [0E |* << |[0E)* <
|6E |%. Furthermore, as one might expect, the maximum value of |[0B|?/B2 decreases by an
order of magnitude with a factor of ten decrease in .. In contrast, the saturation value of
|0E|?/ B2 shows a modest increase as ). decreases.

After saturation, Figure 6 further shows the usual temporal decrease of the electron
temperature anisotropy and the fluctuating field energies ([2], [10]; [12]). However, there
are quantitative differences in the late time responses. Specifically, the overall percentages
of late-time decreases in T'./Tj, |0B|*/B,, and |[E|*/B, increase from the §. = 0.10 Run
1 to the B, = 0.01 Run 3. This is apparently due to the increasing excitation of oblique
modes which are subject to Landau damping so that the transfer of energy from electrons to
waves during instability growth is reversed and wave dissipation and electron heating takes
place.

Figure 7 illustrates the reduced electron velocity distribution f.(v)) at [Q.|t = 0 and 1836
for all three runs. For Run 1 [E|?> << [§B|? and pitch-angle scattering by the magnetic

fluctuations is the primary electron transport process. The late-time velocity distribution



from Run 1 shows weak transport of electrons from thermal to suprathermal speeds, but no
significant departure from the overall Maxwellian shape. In contrast, the late-time f,(v))
from Run 3 shows much stronger electron heating, with substantial energy gain which ap-
pears as a new suprathermal component (Fig. 5 of [13]; Fig. 14 of [7]). Our interpretation
of this suprathermal electron heating is that it is the result of two separate wave-particle in-
teractions acting in tandem. First, there is pitch-angle scattering via the electron cyclotron
resonance with the 6B, and 6B, (which remain relatively large even at oblique propa-
gation); as in the electromagnetic Run 1, this transports electrons from larger to smaller
pitch angles without substantial change in particle energy. Second, there is heating par-
allel to B, via the electron Landau resonance with 6F) (which is zero for the dominant
parallel-propagating fluctuations of the electromagnetic case but significant at oblique prop-
agation, as indicated by Figure 2b) which substantially increases the kinetic energy of the
suprathermal electrons.

Figure 8 provides further insight into this suprathermal electron heating by illustrating a
detail from f.(v)) at four different times during Run 3. The image shows a gradual increase

6 as simulation time progresses, but

~N

in the number of electrons in the range 3 < |v[/ve <
no important increase in the electron flux at 6 < |v)|/v.. This is consistent with the scenario
that this heating is due to the Landau resonant interaction between JFE| and the parallel
component of electron velocities. At maximum growth linear theory for the initial conditions
of Run 3 predicts w, /kjjv. =~ 3.9, so the parallel electric fields are strongly scattering electrons
near v ~ 3.9v,, allowing the particles to move down the gradient of the velocity distribution
to become the suprathermal component illustrated in Figures 7 and 8. This component is

not well fit by either a hot Maxwellian or a kappa-type parallel velocity distribution.

IV. CONCLUSIONS

We have carried out particle-in-cell simulations of the whistler anisotropy instability
driven by a temperature anisotropy 7' ./T) > 1 on an initially bi-Maxwellian electron ve-
locity distribution. Linear theory predicts that, at £, > 0.025, the maximum growth rate
of this instability is at propagation parallel to B, and the fluctuating fields are primar-
ily electromagnetic. At smaller values of 3., the maximum growth rate shifts to oblique

propagation and the electric field fluctuations become predominantly electrostatic. The sim-



ulations confirm these predictions of linear theory. Furthermore, the 3. = 0.01 and 0.03
simulations show that the ¢ £ from the growth of fluctuations at oblique propagation leads
to the formation of a substantial suprathermal component in the electron parallel velocity

distribution.
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FIG. 1: The linear growth rate of the whistler anisotropy instability as a function of the angle
of propagation for three different values of kv,/€, as labeled. Here and in Figures 2, 3, and 4,
my/m. = 1836, we /|| = 4.0, T)\./T), = 1.0, and T = T, = T),. Further, §, and the electron
anisotropies are chosen to yield vy, /|Q¢| = 0.01. (a) B = 0.10 and T/ T}, = 2.25. (b) 5 = 0.01
and T./T). = 3.78.

FIG. 2: Linear theory results: The fluctuating field ratios for the whistler anisotropy instability
as functions of the angle of propagation for the wavenumbers of maximum growth rate using the
same parameters as stated in the caption of Figure 1. (a) Fluctuating magnetic field ratios and

(b) fluctuating electric field ratios.

FIG. 3: Linear properties of the whistler anisotropy instability at -,,/|2¢| = 0.01 as functions of
Bjle- (a) The real frequency, (b) the angle of propagation, (c) the magnitude of the wavenumber,
(d) the electron temperature anisotropy, and (e) the electric/magnetic field energy ratio [Equation
(1)]. For all cases at which the maximum growth rate is at oblique propagation, that is, 0.001

< ,8”@ < 0.025, u)r/k”l)e ~ 4.05.



FIG. 4: The linear growth rate of the whistler anisotropy instability as a function of wavenumber
k and angle of propagation 6 for the initial plasma parameters of the three simulations defined in
the text: (a) Run 1 with 8, = 0.10, (b) Run 2 with 8, = 0.03, and (¢) Run 3 with g, = 0.01.
The heavy black lines in each panel correspond to the condition 7v/|Q.| = 0.02. The asterisk in
each panel represents the maximum growth rate of 7,,/|Q| = 0.03. Note that the minimum value

of the color scale corresponds to v, /|Q2| = -0.03 so that larger damping rates saturate in the plot.

FIG. 5: PIC simulation results at |Q.|t = 184 for (left column) 6B, | (z,y) and (right column)
0B | J_(k”,k 1). The heavy black lines of the right-hand panels correspond to the black lines of
Figure 4, that is, the condition v/|Q.| = 0.02.

FIG. 6: PIC simulation results: The electron temperature anisotropy, the fluctuating magnetic
field component energies, and the fluctuating electric field component energies as functions of time
for (a) (d) (g) Run 1 with g, = 0.10, (b) (e) (h) Run 2 with 3, = 0.03, and (c) (f) (i) Run 3
with 3, = 0.01. In panels (d) (e) and (f), the red lines denote |§B)|?/BZ, the green lines denote
|6B, |2/ B2, the blue lines denote |§B, | |2/B2, and the black lines denote |§B|?>/B2. In panels (g)
(h) and (i), the red lines denote [JE) |2/ B2, the green lines denote |§F | |?/B2, the blue lines denote

|6E, 1 |?/B2, and the black lines denote |0E|?/B2.

FIG. 7: PIC simulation results for the reduced electron velocity distribution f.(v)) (a) Run 1 with
Bjle = 0.10, (b) Run 2 with 8, = 0.03, and (c) Run 3 with ), = 0.01. The dashed curves represent
the initial Maxwellian distributions, and the solid curves display the parallel velocity distributions

at ||t = 1836.

FIG. 8: PIC simulation results from Run 3 for part of the reduced electron velocity distribution
fe(v)|) at four simulation times. The dashed line represents the initial Maxwellian distribution, the
dotted line corresponds to ||t = 367, the long-dash-short-dashed line corresponds to |Q.|t = 918,

and the solid line corresponds to ||t = 1836.
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